Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blocking glutamate carboxypeptidase II inhibits glutamate excitotoxicity and regulates immune responses in experimental autoimmune encephalomyelitis.

FEBS Journal 2016 September
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in the murine central nervous system (CNS) and recapitulates the clinical and pathological features of human multiple sclerosis (MS). Glutamate carboxipeptidase II (GCPII), an enzyme expressed exclusively on astrocytes, is known to affect the disease progression of various neurological disorders by producing glutamate. Despite several findings indicating possible link between glutamate and MS/EAE, however, the involvement of astrocyte or GCPII on glutamate excitotoxicity has not received much attention in MS/EAE. When we examined GCPII expression during EAE progression in this study, we observed significantly elevated GCPII expression in peak stage of disease localized mainly in astrocytes. Intrigued by these results, we tried a potent GCPII inhibitor, 2-phosphonomethyl pentanedioic acid (2-PMPA), on EAE mice and noticed markedly attenuated EAE clinical signs along with significantly inhibited infiltration of inflammatory cells into CNS. Furthermore, 2-PMPA dampened the function of Th1 cell lineage and down-regulated mGluR1 expression in both periphery and CNS contributing to glutamate-mediated immune regulation. Our observations identify a sequence of events triggering EAE through GCPII overexpression, which may offer a novel therapeutic approach to the treatment of MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app