Add like
Add dislike
Add to saved papers

Influence of 320-detector-row volume scanning and AAPM report 111 CT dosimetry metrics on size-specific dose estimate: a Monte Carlo study.

The American Association of Physicists in Medicine (AAPM) task group 204 has recommended the use of size-dependent conversion factors to calculate size-specific dose estimate (SSDE) values from volume computed tomography dose index (CTDIvol) values. However, these conversion factors do not consider the effects of 320-detector-row volume computed tomography (CT) examinations or the new CT dosimetry metrics proposed by AAPM task group 111. This study aims to investigate the influence of these examinations and metrics on the conversion factors reported by AAPM task group 204, using Monte Carlo simulations. Simulations were performed modelling a Toshiba Aquilion ONE CT scanner, in order to compute dose values in water for cylindrical phantoms with 8-40-cm diameters at 2-cm intervals for each scanning parameter (tube voltage, bow-tie filter, longitudinal beam width). Then, the conversion factors were obtained by applying exponential regression analysis between the dose values for a given phantom diameter and the phantom diameter combined with various scanning parameters. The conversion factors for each scanning method (helical, axial, or volume scanning) and CT dosimetry method (i.e., the CTDI100 method or the AAPM task group 111 method) were in agreement with those reported by AAPM task group 204, within a percentage error of 14.2 % for phantom diameters ≥11.2 cm. The results obtained in this study indicate that the conversion factors previously presented by AAPM task group 204 can be used to provide appropriate SSDE values for 320-detector-row volume CT examinations and the CT dosimetry metrics proposed by the AAPM task group 111.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app