Add like
Add dislike
Add to saved papers

Designing a robust backstepping controller for rehabilitation in Parkinson's disease: a simulation study.

In this study, a model of basal ganglia (BG) is applied to develop a deep brain stimulation controller to reduce Parkinson's tremor. Conventionally, one area in BG is stimulated, with no feedback, to control Parkinson's tremor. In this study, a new architecture is proposed to develop feedback controller as well as to stimulate two areas of BG simultaneously. To this end, two controllers are designed and implemented in globus pallidus internal (GPi) and subthalamic nucleus (STN) in the brain. A proportional controller and a backstepping controller are designed and implemented in GPi and STN, respectively. The proposed controllers deliver suitable stimulatory control signals to GPi and STN based on hand tremor amplitude (as the feedback). When tremor reduces, these controllers decrease the stimulatory energy intensity proportionally. Therefore, additional stimulatory signal is not delivered to the brain. Subsequently, the side effects from the excessive stimulation intensity become much less. Comparing with one area stimulation, the results show that stimulating two areas of BG results in reduction of the level of the stimulation intensity. It is observed that these two controllers are both robust in terms of changing the system parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app