Add like
Add dislike
Add to saved papers

Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock.

Oleaginous yeast Trichosporon cutaneum is robust to high levels of lignocellulose derived inhibitor compounds with considerable lipid accumulation capacity. The potential of lipid accumulation of T. cutaneum ACCC 20271 was investigated using corn stover hydrolysates with varying sugar and inhibitor concentrations. Biodiesel was synthesized using the extracted lipid and the product satisfied the ASTM standards. Among the typical inhibitors, T. cutaneum ACCC 20271 is relatively sensitive to furfural and 4-hydroxybenzaldehyde, but strongly tolerant to high titers of formic acid, acetic acid, levulinic acid, HMF, vanillin, and syringaldehyde. It is capable of complete degradation of formic acid, acetic acid, vanillin and 4-hydroxybenzaldehyde. Finally, the inhibitor degradation pathways of T. cutaneum ACCC 20271 were constructed based on the newly sequenced whole genome information and the experimental results. The study provided the first insight to the inhibitor degradation of T. cutaneum and demonstrated the potentials of lipid production from lignocellulose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app