Add like
Add dislike
Add to saved papers

Orexin Decreases Aromatase Gene Expression in The Hypothalamus of Androgenized Female Rats.

BACKGROUND: Orexin is a hypothalamic orexigenic neuropeptide, which third cerebral injection of it mainly exerts inhibitory effects on reproductive functions. It increases significantly the Aromatase (Cyp19) gene expression in the hypothalamus of male rats. Aromatase is an enzyme which converts androgens to estradiol in the hypothalamus of rats. Prenatal or neonatal exposure of females to testosterone masculinizes the pattern of Cyp19 mRNA levels in adulthood. In the present study the effects of central injections of orexin-A on hypothalamic Cyp19 gene expression of adult female rats were investigated, while they had been androgenized on third day of postnatal life.

MATERIALS AND METHODS: In this experimental study, twenty female Wistar rats received subcutaneous injections of testosterone propionate (50 µg/100 µl) on their third day of postnatal life. Adult androgenized rats weighing 180-220 g, received either 3 µl saline or one of 2, 4 or 8 µg/3 µl concentration of orexin via third cerebral ventricle. Five non-androgenized rats, as control group, received intra cerebral ventricle (ICV) injection of 3 µl saline. The hypothalamuses were dissected out and mean Cyp19 mRNA levels were determined by semi-quantitative real time-polymerase chain reaction (PCR) method. Data were analyzed by unpaired t test and one-way ANOVA using SPSS software, version 16.

RESULTS: Mean relative Cyp19 mRNA level was significantly increased in the hypothalamus of androgenized compared to non-androgenized female rats. Central injec- tions of 2, 4 or 8 µg/3 µl orexin decreased significantly the hypothalamic Cyp19 mRNA level of androgenized rats compared to androgenized-control groups.

CONCLUSION: The results suggested that the orexin may exert inhibitory effects on the gene expression of Cyp19 in the hypothalamus of neonatal androgenized female rats in adulthood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app