Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

Experimental Validation of Noninvasive Epicardial and Endocardial Activation Imaging.

BACKGROUND: Noninvasive imaging of cardiac activation before ablation of the arrhythmogenic substrate can reduce electrophysiological procedure duration and help choosing between an endocardial or epicardial approach. A noninvasive imaging technique was evaluated that estimates both endocardial and epicardial activation from body surface potential maps. We performed a study in isolated and in situ pig hearts, estimating activation from body surface potential maps during sinus rhythm and localizing endocardial and epicardial stimulation sites.

METHODS AND RESULTS: From 3 Langendorff-perfused pig hearts, 180 intramural unipolar electrograms were recorded during sinus rhythm and ectopic activation, together with pseudo-body surface potential map ECGs in 2 of them. From 4 other anesthetized pigs, 64-lead body surface potential maps were recorded during sinus rhythm and ventricular stimulation from 27 endocardial and epicardial sites. The ventricular activation pattern was computed from the recorded QRS complexes. For both Langendorff-perfused hearts, the calculated epicardial and endocardial activation patterns showed good qualitative correspondence to the patterns obtained with needle electrodes. Absolute timing difference for sinus rhythm was 10±5 and 11±8 ms respectively, and for ectopic activation 6±5 and 7±6 ms, respectively. Calculated activation for the in situ hearts in sinus rhythm was similar to patterns recorded in Langendorff-perfused hearts. During stimulation, the distance between the stimulation site and calculated site of earliest activation was 18 (15-27) mm, and 23 of 27 stimulation sites were correctly mapped to either endocardium or epicardium.

CONCLUSIONS: Noninvasive activation imaging is able to determine earliest ventricular activation and discriminate endocardial from epicardial origin of activation with clinically relevant accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app