Add like
Add dislike
Add to saved papers

Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-β Production by Epidermal Keratinocytes during Skin Injury.

Immunity 2016 July 20
Type 1 interferons (IFNs) promote inflammation in the skin but the mechanisms responsible for inducing these cytokines are not well understood. We found that IFN-β was abundantly produced by epidermal keratinocytes (KCs) in psoriasis and during wound repair. KC IFN-β production depended on stimulation of mitochondrial antiviral-signaling protein (MAVS) by the antimicrobial peptide LL37 and double stranded-RNA released from necrotic cells. MAVS activated downstream TBK1 (TANK-Binding Kinase 1)-AKT (AKT serine/threonine kinase 1)-IRF3 (interferon regulatory factor 3) signaling cascade leading to IFN-β production and then promoted maturation of dendritic cells. In mice, the production of epidermal IFN-β by LL37 required MAVS, and human wounded and/or psoriatic skin showed activation of MAVS-associated IRF3 and induction of MAVS and IFN-β gene signatures. These findings show that KCs are an important source of IFN-β and MAVS is critical to this function, and demonstrates how the epidermis triggers unwanted skin inflammation under disease conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app