Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Heightened stress response and cognitive impairment after repeated neonatal sevoflurane exposures might be linked to excessive GABAAR-mediated depolarization.

OBJECTIVE: Children with repeated exposures to anesthesia at an early age are at an increased risk of cognitive impairment. Data in the literature link increased developmental depolarizing γ-aminobutyric acid (GABA) type A receptor (GABAAR) at younger age to neurodevelopmental disorders. Here we investigated the involvement of GABAergic signaling during development in mediating the adverse effects of repeated sevoflurane exposures.

METHODS: Sprague-Dawley male rats received repeated exposures to 3 % sevoflurane for 2 h daily for 3 consecutive days on postnatal days (P) 4, 5, and 6; maternally separated and unseparated rats served as controls. A subgroup of rats received three injections of the Na(+)-K(+)-2Cl(-) cotransporter inhibitor, bumetanide (1.82 mg/kg, intraperitoneally) 15 min prior to initiation of each sevoflurane exposure.

RESULTS: The results showed that repeated neonatal sevoflurane exposures contribute to learning and memory impairment in the Morris water maze (MWM) at P60. The corticosterone level was significantly increased immediately after repeated neonatal sevoflurane exposures. Repeated neonatal sevoflurane exposures heightened the secretion of corticosterone in response to stress in P7 and P60 rats. Pretreatment of male rats prior to each sevoflurane exposure with bumetanide attenuated the corticosterone level immediately after repeated neonatal sevoflurane exposures, normalized endocrine response to stress at P7 and P60, and attenuated the sevoflurane-induced learning and memory impairment in the MWM.

CONCLUSION: These data suggested that the heightened stress response and cognitive impairment after repeated neonatal sevoflurane exposures might be linked to excessive GABAAR-mediated depolarization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app