Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields.

High-intensity nanosecond pulsed electric fields (nsPEFs) permeabilize cell membranes. Although progress has been made toward an understanding of the mechanism of nsPEF-induced membrane poration, the dependence of pore size and distribution on pulse duration, strength, number, and repetition rate remains poorly defined experimentally. In this paper, we characterize the size of nsPEF-induced pores in living cell membranes by isosmotically replacing the solutes in pulsing media with polyethylene glycols and sugars before exposing Jurkat T lymphoblasts to 5 ns, 10 MV/m electric pulses. Pore size was evaluated by analyzing cell volume changes resulting from the permeation of osmolytes through the plasma membrane. We find that pores created by 5 ns pulses have a diameter between 0.7 and 0.9 nm at pulse counts up to 100 with a repetition rate of 1 kHz. For larger number of pulses, either the pore diameter or the number of pores created, or both, increase with increasing pulse counts. But the prevention of cell swelling by PEG 1000 even after 2000 pulses suggests that 5 ns, 10 MV/m pulses cannot produce pores with a diameter larger than 1.9 nm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app