Add like
Add dislike
Add to saved papers

Treatment of Volatile Organic Compounds with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

Large amount of calcium fluoride sludge was generated by semiconductor industry every year. It also needs high requirement of fuel consumption using rotor concentrator and thermal oxidizer to treat VOCs. The mesoporous catalyst prepared by calcium fluoride sludge was used for VOCs treatment in this study. Acetone is a kind of solvent and used in a large number of laboratories and factories. The serious problems will be caused when it exposed to the environmental. Economic and practical technology is needed to eliminate this kind of hazardous air pollutant. In this research, the adsorption of acetone was tested with CF-MCM (mesoporous silica materials synthesized from calcium fluoride). The raw material was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants, firstly. The prepared mesoporous silica materials were characterized by nitrogen adsorption and desorption analysis, transmission electron microscope (TEM), scanning electron microscopy (SEM), X-ray powder diffractometer (XRPD) and Fourier transform infrared spectroscopy (FTIR). The results showed that the surface area, large pore volume and pore diameter could be up to 862 m2 g(-1), 0.57 cm3 g(-1) and 2.9 nm, respectively. The crystal patterns of CF-MCM were similar with MCM-41 from TEM image. The adsorption capacity of acetone with CF-MCM was 118, 190, 194 and 201 mg g(-1), respectively, under 500, 1000, 1500 and 2000 ppm. Furthermore, the adsorption capacity of MCM-41 and CF-MCM was almost the same. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app