Add like
Add dislike
Add to saved papers

The Renal Outer Medullary Potassium Channel Inhibitor, MK-7145, Lowers Blood Pressure, and Manifests Features of Bartter's Syndrome Type II Phenotype.

The renal outer medullary potassium (ROMK) channel, located at the apical surface of epithelial cells in the thick ascending loop of Henle and cortical collecting duct, contributes to salt reabsorption and potassium secretion, and represents a target for the development of new mechanism of action diuretics. This idea is supported by the phenotype of antenatal Bartter's syndrome type II associated with loss-of-function mutations in the human ROMK channel, as well as, by cardiovascular studies of heterozygous carriers of channel mutations associated with type II Bartter's syndrome. Although the pharmacology of ROMK channels is still being developed, channel inhibitors have been identified and shown to cause natriuresis and diuresis, in the absence of any significant kaliuresis, on acute oral dosing to rats or dogs. Improvements in potency and selectivity have led to the discovery of MK-7145 [5,5'-((1R,1'R)-piperazine-1,4-diylbis(1-hydroxyethane-2,1-diyl))bis(4-methylisobenzofuran-1(3H)-one)], a potential clinical development candidate. In spontaneously hypertensive rats, oral dosing of MK-7145 causes dose-dependent lowering of blood pressure that is maintained during the entire treatment period, and that displays additive/synergistic effects when administered in combination with hydrochlorothiazide or candesartan, respectively. Acute or chronic oral administration of MK-7145 to normotensive dogs led to dose-dependent diuresis and natriuresis, without any significant urinary potassium losses or changes in plasma electrolyte levels. Elevations in bicarbonate and aldosterone were found after 6 days of dosing. These data indicate that pharmacological inhibition of ROMK has potential as a new mechanism for the treatment of hypertension and/or congestive heart failure. In addition, Bartter's syndrome type II features are manifested on exposure to ROMK inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app