Add like
Add dislike
Add to saved papers

Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates.

Although carbon nanotubes (CNTs) are used in many fields, including energy, healthcare, environmental technology, materials, and electronics, the adverse effects of CNTs in the brain are poorly understood. In this study, we investigated the effects of CNTs on cultured microglia, as microglia are the first responders to foreign materials. We compared the effects of sonicated suspensions of 5 kinds of CNTs and their flow-through filtered with a 0.22 µm membrane filter on microglial viability. We found that sonicated suspensions caused microglial cell damage, but their flow-through did not. The number of microglial aggregates was well correlated with the extent of the damage. We also determined that the CNT agglomerates consisted of two groups: one was phagocytosed by microglia and caused microglial cell damage, and the other caused cell damage without phagocytosis. These results suggest that phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by CNT agglomerates and it is important to conduct studies about the relationships between physical properties of nanomaterial-agglomerates and cell damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app