Add like
Add dislike
Add to saved papers

MicroRNA-27a-3p regulates epithelial to mesenchymal transition via targeting YAP1 in oral squamous cell carcinoma cells.

Oncology Reports 2016 September
MicroRNAs (miRNAs) are small non-coding RNAs frequently dysregulated in human malignancies. Here, we profiled isolated cells from freshly resected tumors from oral squamous cell carcinoma (OSCC) patients and OSCC cell lines using a SYBR Green-based qPCR miRNA array to identify the expression change of the miRNAs. Based on the microarray data and clincopathological factor analysis of 50 OSCC patients related to these miRNAs, miR-27a-3p was selected as a putative miRNA which might play important role in OSCC progression. By bioinformatics analysis and dual-luciferase reporter assay, we found that YAP1 (Yes-associated protein-1) was a direct target gene of miR-27a-3p. Intriguingly, increased expression of miR-27a-3p could significantly decrease the expression level of YAP1 as well as several epithelial to mesenchymal transition (EMT)-related molecules in OSCC cell lines, including Twist and Snail. Then, follow-up studies revealed that miR-27a-3p expression was able to downregulate the EMT-related molecules effectively, which might be involved in the regulation of Sox2 via the YAP1-OCT4-Sox2 signaling axis. In summary, this study found that miR-27a-3p could inhibit the YAP1 directly by post-transcriptionally silencing and potentially suppress EMT process, suggesting that miR‑27a-3p might play pivotal roles in effectively manipulating the invasion and metastasis in oral squamous cell carcinoma cells through the EMT inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app