Add like
Add dislike
Add to saved papers

In vitro effects of 0 to 120 Grays of irradiation on bone viability and release of growth factors.

BMC Oral Health 2016 July 5
BACKGROUND: High dose radiation therapy is commonly used in maxillofacial surgeries to treat a number of head and neck tumors. Despite its widespread use, little information is available regarding the effects of irradiation on bone cell viability and release of growth factors following dose-dependent irradiation.

METHODS: Bone samples were collected from porcine mandibular cortical bone and irradiated at doses of 0, 7.5, 15, 30, 60 and 120 Grays. Thereafter, cell viability was quantified, and the release of growth factors including TGFβ1, BMP2, VEGF, IL1β and RANKL were investigated over time.

RESULTS: It was observed that at only 7.5Gy of irradiation, over 85 % of cells were non-vital and by 60 Gy, all cells underwent apoptosis. Furthermore, over a 7-fold decrease in VEGF and a 2-fold decrease in TGFβ1 were observed following irradiation at all tested doses. Little change was observed for BMP2 and IL1β whereas RANKL was significantly increased for all irradiated samples.

CONCLUSIONS: These results demonstrate the pronounced effects of irradiation on bone-cell vitality and subsequent release of growth factors. Interestingly, the largest observed change in gene expression was the 7-fold decrease in VEGF protein following irradiation. Future research aimed at improving our understanding of bone following irradiation is necessary to further improve future clinical treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app