Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A framework for parameter estimation and model selection in kernel deep stacking networks.

BACKGROUND AND OBJECTIVES: Kernel deep stacking networks (KDSNs) are a novel method for supervised learning in biomedical research. Belonging to the class of deep learning techniques, KDSNs are based on artificial neural network architectures that involve multiple nonlinear transformations of the input data. Unlike traditional artificial neural networks, KDSNs do not rely on backpropagation algorithms but on an efficient fitting procedure that is based on a series of kernel ridge regression models with closed-form solutions. Although being computationally advantageous, KDSN modeling remains a challenging task, as it requires the specification of a large number of tuning parameters.

METHODS AND MATERIAL: We propose a new data-driven framework for parameter estimation, hyperparameter tuning, and model selection in KDSNs. The proposed methodology is based on a combination of model-based optimization and hill climbing approaches that do not require the pre-specification of any of the KDSN tuning parameters. We demonstrate the performance of KDSNs by analyzing three medical data sets on hospital readmission of diabetes patients, coronary artery disease, and hospital costs.

RESULTS: Our numerical studies show that the run-time of the proposed KDSN methodology is significantly shorter than the respective run-time of grid search strategies for hyperparameter tuning. They also show that KDSN modeling is competitive in terms of prediction accuracy with other state-of-the-art techniques for statistical learning.

CONCLUSIONS: KDSNs are a computationally efficient approximation of backpropagation-based artificial neural network techniques. Application of the proposed methodology results in a fast tuning procedure that generates KDSN fits having a similar prediction accuracy as other techniques in the field of deep learning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app