Add like
Add dislike
Add to saved papers

In silico screening for identification of novel β-1,3-glucan synthase inhibitors using pharmacophore and 3D-QSAR methodologies.

The enzyme β-1,3-glucan synthase, which catalyzes the synthesis of β-1,3-glucan, an essential and unique structural component of the fungal cell wall, has been considered as a promising target for the development of less toxic anti-fungal agents. In this study, a robust pharmacophore model was developed and structure activity relationship analysis of 42 pyridazinone derivatives as β-1,3-glucan synthase inhibitors were carried out. A five-point pharmacophore model, consisting of two aromatic rings (R) and three hydrogen bond acceptors (A) was generated. Pharmacophore based 3D-QSAR model was developed for the same reported data sets. The generated 3D-QSAR model yielded a significant correlation coefficient value (R (2) = 0.954) along with good predictive power confirmed by the high value of cross-validated correlation coefficient (Q (2) = 0.827). Further, the pharmacophore model was employed as a 3D search query to screen small molecules database retrieved from ZINC to select new scaffolds. Finally, ADME studies revealed the pharmacokinetic efficiency of these compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app