Add like
Add dislike
Add to saved papers

Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice.

In recent years, many synthetic cannabinoid (CB) receptor agonists have appeared on the market as constituents of herbal incense mixtures known as "spice". Contrary to the declared use, they are perorally consumed as a replacement for marijuana to get "high". In many cases, detailed information on the physicochemical and pharmacological properties of the synthetic compounds found in spice preparations is lacking. We have now evaluated a large series of heterocyclic compounds, 1,3-disubstituted indole and 2-azaindole derivatives known or assumed to be CB1 receptor agonists, many of which have previously been identified in forensic samples. The mainly observed structural variations to circumvent restriction by law were bioisosteric exchanges of functional groups in known CB1 agonists. We analyzed the structure-activity relationships of compounds at human CB1 and CB2 receptors based on affinities obtained in radioligand binding studies, and determined their efficacy in cAMP accumulation assays. Moreover, we investigated the activities of the compounds at the orphan G protein-coupled receptors GPR18 and GPR55 both of which are known to interact with cannabinoids. Most of the investigated compounds behaved as potent full agonists of CB1 and CB2 receptors with affinities in the low nanomolar to subnanomolar concentration range. Some compounds were moderately potent GPR55 antagonists, while none interacted with GPR18. Most derivatives were predicted to cross the blood-brain barrier as determined by bioinformatics tools. These data are useful for assessing synthetic cannabinoids and will be helpful for predicting pharmacological properties of novel compounds that appear on the illicit drug market.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app