JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Specific Triacylglycerols Accumulate via Increased Lipogenesis During 5-FU-Induced Apoptosis.

ACS Chemical Biology 2016 September 17
Lipids are emerging as key regulators of fundamental cellular processes including cell survival, division, and death. Apoptosis, a form of programmed cell death, is accompanied by numerous membrane-related phenotypic changes. However, we have an incomplete understanding of the involvement of specific lipid structures during this process. Here, we report that triacylglycerols are regulated at the molecular level during 5-fluorouracil-induced apoptosis in HCT-116. Mass-spectrometry-based global lipid profiling shows that specific triacylglycerols accumulate during apoptosis. Expression levels and activities of enzymes that are responsible for the biosynthesis and metabolic processing of triacylglycerols suggest that triacylglycerol biosynthesis is responsible for these accumulations. Based on our data, we propose that regulation of triacylglycerols at the molecular level happens downstream of p53 activation and potentially is a mechanism to prevent lipid oxidation during apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app