Add like
Add dislike
Add to saved papers

Thermo-Hydraulic Characteristics of Anatase Titania Nanofluids Flowing Through a Circular Conduit.

The thermo-hydraulic characteristics of anatase titanium dioxide dispersed into distilled water with particle concentration of 0.1, 0.3, and 0.5 vol.% were investigated experimentally in this work. The influence of rheological behavior on hydrodynamic and convective heat transfer characteristics was evaluated under both laminar and turbulent flow conditions in a plain conduit and with twisted tape insert for twist ratio of 7. The nanofluids exhibited a strong shear-thinning behavior at low shear rate particularly higher particle concentration. The non-Newtonian titania nanofluids have also demonstrated a drag reduction phenomena in turbulent flow. At equal Reynolds number, the values of performance evaluation criterion in a conduit inserted a twisted tape were lower than those of in a plain conduit. It implies the unfavourable energy budget for twisted tape insert. The convective heat transfer coefficient does not gradually enhance with an increase of particle concentration. The flow features due mainly to the rheology of colloidal dispersions might be a reason for this phenomenon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app