Add like
Add dislike
Add to saved papers

Characterization of aerobic oil and grease-degrading bacteria in wastewater.

A bacterial consortium that degrades cooking oil (CO) has been isolated in wastewater (WW) samples, by enrichment in olive CO. This consortium could degrade 90% of CO within 7-9 days (from an initial 1% [w/v]), and it is more active at alkaline conditions. The 16S ribonucleic acid (RNA) gene analysis showed that it contains five bacterium species: Stenotrophomonas rhizophila, Sphingobacterium sp., Pseudomonas libanensis, Pseudomonas poae and Pseudomonas aeruginosa. This consortium can degrade the free fatty acids (FFA): palmitic, stearic, oleic, linoleic and linolenic acids; glycerol, glucose and amylose; and albumin, but could not efficiently degrade carboxymethyl-cellulose. Each strain could also degrade CO and FFAs. The level of bacterial crude-activity of extracellular lipases was found to be between 0.2 and 4U/ml. Using synthetic WW, the consortium could reduce 80% of the chemical oxygen demand [from 10550 ± 2828 mg/l], 80% of nitrogen (from 410 ± 78 mgl/l) and 57% of phosphorus (from 93 ± 25 mg/l). Thus, this consortium can be utilized in the removal of CO from WW.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app