Add like
Add dislike
Add to saved papers

Core-shell particles formed by β-lactoglobulin microgel coated with xyloglucan.

Core-shell particles were formed by mixing in aqueous solution the neutral polysaccharide xyloglucan (XG) with microgels. The last one was obtained by heating the whey protein β-lactoglobulin (β-LG) in the presence of CaCl2. XG adsorbed spontaneously unto the microgels at pH<5.6. The amount of bound XG per protein was determined using a combination of centrifugation and size exclusion chromatography. It increased linearly with increasing XG concentration. The fraction of XG that adsorbed increased with decreasing pH. The formation of the XG shell inhibited large scale flocculation of the particles, that causes precipitation for naked microgels, close to their isoionic point. The thickness of the XG shell was estimated by measurement of the hydrodynamic radius using dynamic light scattering. The extent of binding depended on the pH history during mixing showing that the protein/XG complex was not in thermodynamic equilibrium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app