Add like
Add dislike
Add to saved papers

Transcriptomic responses of marine medaka's ovary to hypoxia.

Aquatic Toxicology 2016 August
Hypoxia, an endocrine disruptor, is pressing global problem affecting marine organisms in over 400 "Dead Zones" worldwide. There is growing evident demonstrated the disruptive effect of hypoxia on reproductive systems of marine fish through the impairments of steroidogenic gene expression, leading to the alteration of sex hormone production in gonads. But the detailed molecular mechanism underlying the responses of female reproductive systems to hypoxic stress remains largely unknown. In the present report, we used marine medaka Oryzias melastigma as a model, together with high-throughput transcriptome sequencing and bioinformatics analysis, aiming to determine the changes in transcriptional signature in the ovary of marine fish under hypoxic stress. Our result discovered over two hundred differential expressed genes in ovary in response to hypoxia. The bioinformatics analysis together with quantitative RT-PCR validation on the deregulated genes highlighted the dysregulations of a number of female reproductive functions including interruptions of ovarian follicle development, gonad development and steroid metabolic process. Additionally, we revealed that these deregulations are through the modulation of leukemia inhibitory factor (LIF), insulin-like growth factor 1 receptor (IGF1R) and follicle stimulating hormone (FSH). The result of this work complements previous studies and provides additional insights into the underlying molecular mechanism of hypoxia-induced impairment of female reproductive system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app