JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis.

BACKGROUND: Adipose tissue regulates postprandial lipid metabolism by storing dietary fat through lipoprotein lipase-mediated hydrolysis of exogenous triglycerides, and by inhibiting delivery of endogenous non-esterified fatty acid to nonadipose tissues. Animal studies show that acute hypoxia, a model of obstructive sleep apnea, reduces adipose tissue lipoprotein lipase activity and increases non-esterified fatty acid release, adversely affecting postprandial lipemia. These observations remain to be tested in humans.

METHODS: We used differentiated human preadipocytes exposed to acute hypoxia as well as adipose tissue biopsies obtained from 10 healthy men exposed for 6 h to either normoxia or intermittent hypoxia following an isocaloric high-fat meal.

RESULTS: In differentiated preadipocytes, acute hypoxia induced a 6-fold reduction in lipoprotein lipase activity. In humans, the rise in postprandial triglyceride levels did not differ between normoxia and intermittent hypoxia. Non-esterified fatty acid levels were higher during intermittent hypoxia session. Intermittent hypoxia did not affect subcutaneous abdominal adipose tissue lipoprotein lipase activity. No differences were observed in lipolytic responses of isolated subcutaneous abdominal adipocytes between normoxia and intermittent hypoxia sessions.

CONCLUSIONS: Acute hypoxia strongly inhibits lipoprotein lipase activity in differentiated human preadipocytes. Acute intermittent hypoxia increases circulating plasma non-esterified fatty acid in young healthy men, but does not seem to affect postprandial triglyceride levels, nor subcutaneous abdominal adipose tissue lipoprotein lipase activity and adipocyte lipolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app