JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

4-Methylzymosterone and Other Intermediates of Sterol Biosynthesis from Yeast Mutants Engineered in the ERG27 Gene Encoding 3-Ketosteroid Reductase.

Lipids 2016 September
Studies in the post-squalene section of sterol biosynthesis may be hampered by the poor availability of authentic standards. The present study used different yeast strains engineered in 3-ketosteroid reductase (Erg27p) to obtain radioactive and non-radioactive intermediates of sterol biosynthesis hardly or not available commercially. Non-radioactive 3-keto 4-monomethyl sterones were purified from non-saponifiable lipids extracted from cells bearing point-mutated 3-ketosteroid reductase. Two strategies were adopted to prepare the radioactive compounds: (1) incubation of cell homogenates of an ERG27-deletant strain with radioactive lanosterol, (2) incubation of growing cells of a strain expressing point-mutated 3-ketosteroid reductase with radioactive acetate. Chemical reduction of both radioactive and non-radioactive 3-keto sterones gave the physiological 3-β OH sterols, as well as the non-physiological 3-α OH isomers. This combined biological and chemical preparation procedure provided otherwise unavailable or hardly available 4-mono-methyl intermediates of sterol biosynthesis, paving the way for research into their roles in physiological and pathological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app