Add like
Add dislike
Add to saved papers

Pharmacological evaluation of pioglitazone and candesartan cilexetil in a novel mouse model of non-alcoholic steatohepatitis, modified choline-deficient, amino acid-defined diet fed low-density lipoprotein receptor knockout mice.

AIM: Low-density lipoprotein receptor knockout (LDLR-KO) mice fed a modified choline-deficient and amino acid-defined (mCDAA) diet show non-alcoholic steatohepatitis (NASH)-like pathophysiology. In order to pharmacologically benchmark this model, effects of pioglitazone (a thiazolidinedione) and candesartan cilexetil (an angiotensin II type 1 receptor blocker) on steatosis and liver fibrosis were examined.

METHODS: Pioglitazone (10 mg/kg) and candesartan cilexetil (3 mg/kg) were given orally once daily to LDLR-KO mice under mCDAA diet for 7 weeks. Blood biochemistry and hepatic histology were assessed, and hepatic gene expression levels and triglyceride content were measured.

RESULTS: Pioglitazone suppressed hepatic COL1A1 gene expression by 43% and attenuated hepatic fibrosis areas by 49%. Pioglitazone also decreased plasma alanine aminotransferase levels, liver weight, hepatic triglyceride content, and hepatic expression of other fibrosis-related genes such as TGFB1, SPP1, TIMP1, and IL6. Candesartan cilexetil suppressed hepatic COL1A1 gene expression by 33%, whereas the other end-points including hepatic fibrosis areas were not affected.

CONCLUSIONS: Pioglitazone showed anti-fibrotic effects accompanied by improving hepatic transaminase activity and hepatic lipid accumulation, but the effect of candesartan cilexetil was only limited, unlike previous reports for angiotensin II type 1 receptor blockers. As the pharmacological effects of pioglitazone in the current animal model are similar to those reported in patients with NASH, this model may represent some aspects of the pathophysiology of NASH. Further profiling using other agents or mechanisms that have been tested in the clinic will better clarify the utility of the animal model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app