Add like
Add dislike
Add to saved papers

Surface-Induced Phase of Tyrian Purple (6,6'-Dibromoindigo): Thin Film Formation and Stability.

The appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6'-dibromoindigo (Tyrian purple) forms two polymorphs within thin films. At growth temperatures of 150 °C, the well-known bulk structure forms, while at a substrate temperature of 50 °C, a surface-induced phase is observed instead. In the present work, the crystal structure of the surface-induced polymorph is solved by a combined experimental and theoretical approach using grazing incidence X-ray diffraction and molecular dynamics simulations. A comparison of both phases reveals that π-π stacking and hydrogen bonds are common motifs for the intermolecular packing. In-situ temperature studies reveal a phase transition from the surface-induced phase to the bulk phase at a temperature of 210 °C; the irreversibility of the transition indicates that the surface-induced phase is metastable. The crystallization behavior is investigated ex-situ starting from the sub-monolayer regime up to a nominal thickness of 9 nm using two different silicon oxide surfaces; island formation is observed together with a slight variation of the crystal structure. This work shows that surface-induced phases not only appear for compounds with weak, isotropic van der Waals bonds, but also for molecules exhibiting strong and highly directional hydrogen bonds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app