Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of substitution on the ultrafast deactivation of the excited state of benzo[b]thiophene-arylamines.

A complete and systematic study of the spectroscopic and photophysical properties of five novel diarylamines in the benzo[b]thiophene series (oligoanilines) was performed in solution at room (293 K) and low (77 K) temperature. The title compounds resulting from the link between one aniline unit with a benzo[b]thiophene unit (with two different methyl and methoxy substitution) were characterized using steady-state absorption, fluorescence and phosphorescence spectroscopy, as well as femto- to nano-second time resolved spectroscopies. The study involved the determination of the absorption, emission and triplet-triplet absorption together with all relevant quantum yields (fluorescence, phosphorescence, intersystem crossing, internal conversion and singlet oxygen yields), excited state lifetimes and the overall set of deactivation rate constants (kF, kIC and kISC). This study was further complemented with theoretical calculations, namely with the determination of the optimized ground-state molecular geometries for the diarylamines together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The DFT results were found to corroborate the observed charge-transfer character of the singlet excited state. The experimental results showed that the radiationless decay processes (internal conversion and intersystem-crossing) constitute the main excited state deactivation pathways and that substitution with methyl and methoxy groups induces significant changes in the spectroscopic and photophysical behaviour of these compounds. This was also corroborated by the femtosecond transient absorption study, where it was found that the ultrafast dynamics of the diarylamines was best described by a sequential model featuring fast solvent relaxation followed by conformational relaxation to a more planar excited state, from where singlet excited state deactivation occurs through internal conversion and competitive intersystem crossing (the latter giving rise to the formation of long lived triplet states). The high singlet oxygen quantum yield values obtained suggest that the triplet state is involved in the photodegradation processes of these compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app