Add like
Add dislike
Add to saved papers

Magnetic nanoparticles and blood flow behavior in non-Newtonian pulsating flow within the carotid artery in drug delivery application.

Nanoparticles play an important role in the molecular diagnosis, treatment, and monitoring therapeutic outcomes in various diseases. Magnetic nanoparticles are being of great interest due to their unique purposes, especially medicine, in which the application of magnetic nanoparticles is much promising. Magnetic nanoparticles have been actively investigated as the next generation of targeted drug delivery for more than three decades. This article is devoted to study on the magnetic drug targeting technique by particle tracking in the presence of a magnetic field in the carotid artery. The results showed that applying a magnetic field on the secondary branch of the external carotid artery in a pulsating non-Newtonian flow drove nanoparticles inside this sub-branch, while none of them entered that branch in the absence of magnetic field on the internal carotid artery. Wall shear stress distributions showed that high shear stress occurs near the bifurcation region, and its maximum value belongs to the junction of internal carotid artery and external carotid artery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app