Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis.

Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app