JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Computer Simulator of Glycine Receptor Activity: A New Window into a Virtual World.

Our study reports computer software that simulates the work of a single glycine receptor (GlyR). GlyRs have been found in various types of tissues, but their most important role seems to be in neurons, where they hyperpolarise membranes by opening chloride transmembrane channels. The software is based on a combination of two blocks. One block describes the Brownian dynamics of charged particle motion in a dielectric medium, and the other block determines the probability and timing of receptor activation. Using this software, the voltage-current dependencies and time curves of the transmembrane current were obtained. The mean value of the simulated anion current (4.5 ± 0.3 pA) is in good agreement with measured values under identical conditions ([Formula: see text] pA). It was shown that there is a condition under which the GlyR anion channel remains active despite a negligible chloride gradient. Virtual experiments allow evaluation of the value of half maximal effective concentration (EC[Formula: see text]) of the GlyR ([Formula: see text] [Formula: see text]M) and confirm that this receptor activates according to a mechanism involving three ligand binding sites. The advantage of the model is the ability to adjust parameters to the precise demands of experimental researchers. Moreover, the introduced algorithm has low computational power demands; therefore, it can be used as a research tool for assistance with structural experiments and applied aspects of neurophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app