Add like
Add dislike
Add to saved papers

Mode-locking pulse generation with MoS<sub>2</sub>-PVA saturable absorber in both anomalous and ultra-long normal dispersion regimes.

Applied Optics 2016 May 21
We experimentally demonstrate a stable and simple mode locked erbium doped fiber laser (EDFL) utilizing passive few-layer molybdenum disulfide (MoS<sub>2</sub>) as a saturable absorber. The MoS<sub>2</sub> is obtained by liquid phase exfoliation before it is embedded in a polymer composite film and then inserted in the laser cavity. A stable soliton pulse train started at a low threshold pump power of 20 mW in the anomalous dispersion regime after fine-tuning the rotation of the polarization controller. The central wavelength, 3 dB bandwidth, pulse width, and repetition rate of the soliton pulses are 1574.6 nm, 9.5 nm, 790 fs, and 29.5 MHz, respectively. By inserting a 850 m long dispersion shifted fiber (DSF) in the cavity, a dissipative soliton with square pulse train is obtained in the normal dispersion regime where the operating wavelength is centered at 1567.44 nm with a 3 dB bandwidth of 19.68 nm. The dissipative soliton pulse has a pulse width of 90 ns at a low repetition rate of 231.5 kHz due to the long DSF used. These results are a contribution to the pool of knowledge in nonlinear optical properties of two-dimensional nanomaterials especially for ultrafast photonic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app