Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A Synthetic Oxygen Atom Transfer Photocycle from a Diruthenium Oxyanion Complex.

Three new diruthenium oxyanion complexes have been prepared, crystallographically characterized, and screened for their potential to photochemically unmask a reactive Ru-Ru═O intermediate. The most promising candidate, Ru2(chp)4ONO2 (4, chp = 6-chloro-2-hydroxypyridinate), displays a set of signals centered around m/z = 733 amu in its MALDI-TOF mass spectrum, consistent with the formation of the [Ru2(chp)4O](+) ([6](+)) ion. These signals shift to 735 amu in 4*, which contains an (18)O-labeled nitrate. EPR spectroscopy and headspace GC-MS analysis indicate that NO2(•) is released upon photolysis of 4, also consistent with the formation of 6. Photolysis of 4 in CH2Cl2 at room temperature in the presence of excess PPh3 yields OPPh3 in 173% yield; control experiments implicate 6, NO2(•), and free NO3(-) as the active oxidants. Notably, Ru2(chp)4Cl (3) is recovered after photolysis. Since 3 is the direct precursor to 4, the results described herein constitute the first example of a synthetic cycle for oxygen atom transfer that makes use of light to generate a putative metal oxo intermediate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app