Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Signal Transducer and Activator of Transcription 3/MicroRNA-21 Feedback Loop Contributes to Atrial Fibrillation by Promoting Atrial Fibrosis in a Rat Sterile Pericarditis Model.

BACKGROUND: Postoperative atrial fibrillation is a frequent complication in cardiac surgery. The aberrant activation of signal transducer and activator of transcription 3 (STAT3) contributes to the pathogenesis of atrial fibrillation. MicroRNA-21 (miR-21) promotes atrial fibrosis. Recent studies support the existence of reciprocal regulation between STAT3 and miR-21. Here, we test the hypothesis that these 2 molecules might form a feedback loop that contributes to postoperative atrial fibrillation by promoting atrial fibrosis.

METHODS AND RESULTS: A sterile pericarditis model was created using atrial surfaces dusted with sterile talcum powder in rats. The inflammatory cytokines interleukin (IL)-1β, IL-6, transforming growth factor-β, and tumor necrosis factor-α, along with STAT3 and miR-21, were highly upregulated in sterile pericarditis rats. The inhibition of STAT3 by S3I-201 resulted in miR-21 downregulation, which ameliorated atrial fibrosis and decreased the expression of the fibrosis-related genes, α-smooth muscle actin, collagen-1, and collagen-3; reduced the inhomogeneity of atrial conduction; and attenuated atrial fibrillation vulnerability. Meanwhile, treatment with antagomir-21 decreased STAT3 phosphorylation, alleviated atrial remodeling, abrogated sterile pericarditis-induced inhomogeneous conduction, and prevented atrial fibrillation promotion. The culturing of cardiac fibroblasts with IL-6 resulted in progressively augmented STAT3 phosphorylation and miR-21 levels. S3I-201 blocked IL-6 induced the expression of miR-21 and fibrosis-related genes in addition to cardiac fibroblast proliferation. Transfected antagomir-21 decreased the IL-6-induced cardiac fibroblast activation and STAT3 phosphorylation. The overexpression of miR-21 in cardiac fibroblasts caused the upregulation of STAT3 phosphorylation, enhanced fibrosis-related genes, and increased cell numbers.

CONCLUSIONS: Our results have uncovered a novel reciprocal loop between STAT3 and miR-21 that is activated after heart surgery and can contribute to atrial fibrillation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app