Comparative Study
Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multiple breath washout of hyperpolarized 129 Xe and 3 He in human lungs with three-dimensional balanced steady-state free-precession imaging.

PURPOSE: To compare quantitative fractional ventilation measurements from multiple breath washout imaging (MBW-I) using hyperpolarized 3 He with both spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) three-dimensional (3D) pulse sequences and to evaluate the feasibility of MBW-I with hyperpolarized 129 Xe.

METHODS: Seven healthy subjects were scanned using 3 He MBW-I with 3D SPGR and bSSFP sequences. Five also underwent MBW-I with 129 Xe. A dual-tuned coil was used to acquire MBW-I data from both nuclei in the same subject position, enabling direct comparison of regional information.

RESULTS: High-quality MBW images were obtained with bSSFP sequences using a reduced dose (100 mL) of inhaled hyperpolarized 3 He. 3D MBW-I with 129 Xe was also successfully demonstrated with a bSSFP sequence. Regional quantitative ventilation measures derived from 3 He and 129 Xe MBW-I correlated well in all subjects (P < 0.001) with mean Pearson's correlation coefficients of r = 0.61 and r = 0.52 for 3 He SPGR-bSSFP and 129 Xe-3 He (bSSFP) comparisons. The average intersubject mean difference (and standard deviation) in fractional ventilation in SPGR-bSSFP and 129 Xe-3 He comparisons was 15% (28%) and 9% (38%), respectively.

CONCLUSIONS: Improved sensitivity in MBW-I can be achieved with polarization-efficient bSSFP sequences. Same scan-session 3D MBW-I with 3 He and 129 Xe has been demonstrated using a dual-tuned coil. Magn Reson Med 77:2288-2295, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app