JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Effects of Depth of Propofol and Sevoflurane Anesthesia on Upper Airway Collapsibility, Respiratory Genioglossus Activation, and Breathing in Healthy Volunteers.

Anesthesiology 2016 September
BACKGROUND: Volatile anesthetics and propofol impair upper airway stability and possibly respiratory upper airway dilator muscle activity. The magnitudes of these effects have not been compared at equivalent anesthetic doses. We hypothesized that upper airway closing pressure is less negative and genioglossus activity is lower during deep compared with shallow anesthesia.

METHODS: In a randomized controlled crossover study of 12 volunteers, anesthesia with propofol or sevoflurane was titrated using a pain stimulus to identify the threshold for suppression of motor response to electrical stimulation. Measurements included bispectral index, genioglossus electromyography, ventilation, hypopharyngeal pressure, upper airway closing pressure, and change in end-expiratory lung volume during mask pressure drops.

RESULTS: A total of 393 attempted breaths during occlusion maneuvers were analyzed. Upper airway closing pressure was significantly less negative at deep versus shallow anesthesia (-10.8 ± 4.5 vs. -11.3 ± 4.4 cm H2O, respectively [mean ± SD]) and correlated with the bispectral index (P < 0.001), indicating a more collapsible airway at deep anesthesia. Respiratory genioglossus activity during airway occlusion was significantly lower at deep compared with light anesthesia (26 ± 21 vs. 35 ± 24% of maximal genioglossus activation, respectively; P < 0.001) and correlated with bispectral index (P < 0.001). Upper airway closing pressure and genioglossus activity during airway occlusion did not differ between sevoflurane and propofol anesthesia.

CONCLUSIONS: Propofol and sevoflurane anesthesia increased upper airway collapsibility in a dose-dependent fashion with no difference at equivalent anesthetic concentrations. These effects can in part be explained by a dose-dependent inhibiting effect of anesthetics on respiratory genioglossus activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app