Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vitamin D and oxidation-induced DNA damage: is there a connection?

Mutagenesis 2016 November
Oxidation-induced damage to DNA can cause mutations, phenotypic changes and apoptosis. Agents that oppose such damage offer potential therapies for disease prevention. Vitamin D administration reportedly lowered DNA damage in type 2 diabetic mice, and higher DNA damage was reported in mononuclear cells of severely asthmatic patients who were vitamin D deficient. We hypothesised that lower vitamin D status associates with higher oxidation-induced DNA damage. Vitamin D deficiency (plasma 25(OH)D < 50 nmol/l) is highly prevalent worldwide, and association with DNA damage has high potential importance and impact in regard to the future health of vitamin D deficient young adults. In this study, oxidation-induced DNA damage in peripheral lymphocytes of 121 young (18-26 years) adults was measured using the formamidopyrimidine DNA glycosylase (FPG)-assisted comet assay. Plasma 25(OH)D was measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Correlational analysis was performed between 25(OH)D and DNA damage. Differences in DNA damage across tertiles of 25(OH)D were explored using analysis of variance. DNA damage in those with 25(OH)D <50 nmol and ≥50 nmol/l was compared using the unpaired t-test. Mean (SD) DNA damage (as %DNA in comet tail) and plasma 25(OH)D were, respectively, 18.58 (3.39)% and 44.7 (13.03) nmol/l. Most (82/121; 68%) of the subjects were deficient in vitamin D (25(OH)D <50nmol/l). No significant correlation was seen between 25(OH)D and DNA damage (r = -0.0824; P > 0.05). No significant difference was seen across 25(OH)D tertiles: mean (SD) %DNA in comet tail/25(OH)D nmol/l values in lowest, middle and highest tertiles were, respectively, 18.64 (3.30)/31.6 (4.4), 18.90 (3.98)/42.9 (3.5), 18.19 (2.84)/59.9 (8.5), nor across the binary divide: 18.73 (3.63)% in <50nmol/l group vs. 18.27 (2.84)% in the ≥50 nmol/l group. No association between vitamin D and oxidation-induced DNA damage was observed, but vitamin D deficiency was highly prevalent in the young adults studied, and we cannot rule out an ameliorative effect of correction of vitamin D deficiency on DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app