Add like
Add dislike
Add to saved papers

Cardiac reflexes in a warming world: Thermal plasticity of barostatic control and autonomic tones in a temperate fish.

Thermal plasticity of cardiorespiratory function allows ectotherms like fish to cope with seasonal temperature changes and is critical for resilience to climate change. Yet, the chronic thermal effects on cardiovascular homeostatic reflexes in fish are little understood although this may have important implications for physiological performance and overall resilience to climate warming. We compared cardiac autonomic control and baroreflex regulation of heart rate in perch (Perca fluviatilis L.) from a reference area in the Baltic Sea at 18-19°C with conspecifics from the 'Biotest enclosure', a chronically heated ecosystem receiving warmed effluent water (24-25°C) from a nuclear power plant. Resting heart rates of Biotest fish displayed clear thermal compensation and were 58.3±2.3 beats min(-1) compared with 52.4±2.6 beats min(-1) in reference fish at their respective environmental temperatures (Q10: 1.2). The thermally-compensated heart rate of Biotest fish was a combined effect of elevated inhibitory cholinergic tone (105% in Biotest fish versus 70% in reference fish) and reduced intrinsic cardiac pacemaker rate. A barostatic response was evident in both groups, as pharmacologically-induced increases and decreases in blood pressure resulted in atropine-sensitive bradycardia and tachycardia, respectively. Yet, the tachycardia in Biotest fish was significantly greater, presumably due to the larger scope for vagal release. Acclimation of Biotest fish to 18°C for 3 weeks abolished differences in intrinsic heart rate and autonomic tones, suggesting considerable short-term thermal plasticity of cardiovascular control in this species. The heightened hypotensive tachycardia in Biotest perch may represent an important mechanism of ectothermic vertebrates that safeguards tissue perfusion pressure when tissue oxygen demand is elevated by environmental warming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app