Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract.

Kidney International 2016 September
Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. Because the impact of diabetes on RNase 7 expression and function are unknown, we investigated the effects of insulin on RNase 7 using human urine specimens. The urinary RNase 7 concentrations were measured in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared with controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, the mechanisms by which insulin stimulates RNase 7 synthesis were next explored. Insulin induced RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, uropathogenic E. coli suppressed PI3K/AKT activity and RNase 7 production. Thus, insulin and PI3K/AKT signaling are essential for RNase 7 expression and increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. Our data may provide unique insight into novel urinary tract infection therapeutic strategies in at-risk populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app