Add like
Add dislike
Add to saved papers

Persistent mechanical stretch-induced calcium overload and MAPK signal activation contributed to SCF reduction in colonic smooth muscle in vivo and in vitro.

Gastrointestinal (GI) distention is a common pathological characteristic in most GI motility disorders (GMDs), however, their detail mechanism remains unknown. In this study, we focused on Ca(2+) overload of smooth muscle, which is an early intracellular reaction to stretch, and its downstream MAPK signaling and also reduction of SCF in vivo and in vitro. We successfully established colonic dilation mouse model by keeping incomplete colon obstruction for 8 days. The results showed that persistent colonic dilation clearly induced Ca(2+) overload and activated all the three MAPK family members including JNK, ERK and p38 in smooth muscle tissues. Similar results were obtained from dilated colon of patients with Hirschsprung's disease and stretched primary mouse colonic smooth muscle cells (SMCs). Furthermore, we demonstrated that persistent stretch-induced Ca(2+) overload was originated from extracellular Ca(2+) influx and endoplasmic reticulum (ER) Ca(2+) release identified by treating with different Ca(2+) channel blockers, and was responsible for the persistent activation of MAPK signaling and SCF reduction in colonic SMCs. Our results suggested that Ca(2+) overload caused by smooth muscle stretch led to persistent activation of MAPK signaling which might contribute to the decrease of SCF and development of the GMDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app