Add like
Add dislike
Add to saved papers

Independent Pre-Transplant Recipient Cancer Risk Factors after Kidney Transplantation and the Utility of G-Chart Analysis for Clinical Process Control.

BACKGROUND: The aim of this study is to identify independent pre-transplant cancer risk factors after kidney transplantation and to assess the utility of G-chart analysis for clinical process control. This may contribute to the improvement of cancer surveillance processes in individual transplant centers.

PATIENTS AND METHODS: 1655 patients after kidney transplantation at our institution with a total of 9,425 person-years of follow-up were compared retrospectively to the general German population using site-specific standardized-incidence-ratios (SIRs) of observed malignancies. Risk-adjusted multivariable Cox regression was used to identify independent pre-transplant cancer risk factors. G-chart analysis was applied to determine relevant differences in the frequency of cancer occurrences.

RESULTS: Cancer incidence rates were almost three times higher as compared to the matched general population (SIR = 2.75; 95%-CI: 2.33-3.21). Significantly increased SIRs were observed for renal cell carcinoma (SIR = 22.46), post-transplant lymphoproliferative disorder (SIR = 8.36), prostate cancer (SIR = 2.22), bladder cancer (SIR = 3.24), thyroid cancer (SIR = 10.13) and melanoma (SIR = 3.08). Independent pre-transplant risk factors for cancer-free survival were age <52.3 years (p = 0.007, Hazard ratio (HR): 0.82), age >62.6 years (p = 0.001, HR: 1.29), polycystic kidney disease other than autosomal dominant polycystic kidney disease (ADPKD) (p = 0.001, HR: 0.68), high body mass index in kg/m2 (p<0.001, HR: 1.04), ADPKD (p = 0.008, HR: 1.26) and diabetic nephropathy (p = 0.004, HR = 1.51). G-chart analysis identified relevant changes in the detection rates of cancer during aftercare with no significant relation to identified risk factors for cancer-free survival (p<0.05).

CONCLUSIONS: Risk-adapted cancer surveillance combined with prospective G-chart analysis likely improves cancer surveillance schemes by adapting processes to identified risk factors and by using G-chart alarm signals to trigger Kaizen events and audits for root-cause analysis of relevant detection rate changes. Further, comparative G-chart analysis would enable benchmarking of cancer surveillance processes between centers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app