JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

An Alignment-Free "Metapeptide" Strategy for Metaproteomic Characterization of Microbiome Samples Using Shotgun Metagenomic Sequencing.

In principle, tandem mass spectrometry can be used to detect and quantify the peptides present in a microbiome sample, enabling functional and taxonomic insight into microbiome metabolic activity. However, the phylogenetic diversity constituting a particular microbiome is often unknown, and many of the organisms present may not have assembled genomes. In ocean microbiome samples, with particularly diverse and uncultured bacterial communities, it is difficult to construct protein databases that contain the bulk of the peptides in the sample without losing detection sensitivity due to the overwhelming number of candidate peptides for each tandem mass spectrum. We describe a method for deriving "metapeptides" (short amino acid sequences that may be represented in multiple organisms) from shotgun metagenomic sequencing of microbiome samples. In two ocean microbiome samples, we constructed site-specific metapeptide databases to detect more than one and a half times as many peptides as by searching against predicted genes from an assembled metagenome and roughly three times as many peptides as by searching against the NCBI environmental proteome database. The increased peptide yield has the potential to enrich the taxonomic and functional characterization of sample metaproteomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app