Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Targeting Mac-1-mediated leukocyte-RBC interactions uncouples the benefits for acute vaso-occlusion and chronic organ damage.

Vaso-occlusive crisis (VOC) is one of the most common complications of sickle cell disease (SCD). Recurrent episodes of VOC may cause irreversible organ damage and early mortality in patients with SCD. Emerging evidence suggests that VOC arises from a complex cascade that involves interactions among multiple blood and endothelial cells in the vasculature. Previous studies have identified αMβ2 integrin (Mac-1) as a critical molecule that mediates heterotypic interactions between red blood cells (RBCs) and adherent leukocytes and promotes VOC in SCD mice. Here, we show that RBC-leukocyte interactions are significantly diminished in Mac-1-deficient SCD mice, leading to an improvement of blood flow rates and prolonged survival time in a tumor necrosis factor-alpha and surgical-trauma-induced VOC model. Mac-1-deletion, however, was not sufficient to reduce SCD-related chronic organ damage. Our results thus suggest uncoupled mechanisms between acute VOC benefits and the long-term complications of SCD that should be considered in future clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app