Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endogenous cardiac steroids in animal models of mania.

Bipolar Disorders 2016 August
OBJECTIVES: Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na(+) , K(+) -ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania.

METHODS: Amphetamine (AMPH)-induced hyperactivity in BALB/c and black Swiss mice served as a model of mania. Behavior was evaluated in the open-field test in naïve mice or in mice treated with anti-ouabain antibodies. CS levels were determined by enzyme-linked immunosorbent assay (ELISA), using sensitive and specific anti-ouabain antibodies. Extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) phosphorylation levels in the frontal cortex were determined by western blot analysis.

RESULTS: Administration of AMPH to BALB/c and black Swiss mice resulted in a marked increase in locomotor activity, accompanied by a threefold increase in brain CSs. The lowering of brain CSs by the administration of anti-ouabain antibodies prevented the hyperactivity and the increase in brain CS levels. AMPH caused an increase in phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) levels in the frontal cortex, which was significantly reduced by administration of the antibodies. A synthetic 'functional antagonist' of CSs, 4-(3'α-15'β-dihydroxy-5'β-estran-17'β-yl) furan-2-methyl alcohol, also resulted in attenuation of AMPH-induced hyperactivity.

CONCLUSIONS: These results are in accordance with the notion that malfunctioning of the Na(+) , K(+) -ATPase/CS system may be involved in the manifestation of mania and identify this system as a potential new target for drug development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app