Add like
Add dislike
Add to saved papers

Thioglycolic Acid-Capped CdS Quantum Dots Conjugated to α-Amylase as a Fluorescence Probe for Determination of Starch at Low Concentration.

In the present research, water soluble thioglycolic acid-capped CdS quantum dots (QDs) were synthesized by chemical precipitation method. The characteristics of prepared quantum dots were determined using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The obtained results revealed that CdS QDs have 5.60 nm crystallite size, hexagonal wurtzite structure and spherical morphology with less than 10 nm diameter. The photoluminescence (PL) spectroscopy was performed in order to study the effect of the presence of starch solutions. Blue emission peaks were positioned at 488 nm and its intensity quenched by increasing the concentration of starch solutions. The result of PL quenches in range of studied concentrations (0-100 ppm) was best described by Michaelis-Menten model. The amount of Michaelis constant (Km) for immobilized α-amylase in this system was about 68.08 ppm which showed a great tendency of enzyme to hydrolyze the starch as substrate. Finally, the limit of detection (LOD) was found to be about 2.24 ppm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app