Add like
Add dislike
Add to saved papers

PHENOTYPIC CHARACTERIZATION OF BREAST INVASIVE CARCINOMA VIA TRANSFERABLE TISSUE MORPHOMETRIC PATTERNS LEARNED FROM GLIOBLASTOMA MULTIFORME.

Quantitative analysis of whole slide images (WSIs) in a large cohort may provide predictive models of clinical outcome. However, the performance of the existing techniques is hindered as a result of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. Although unsupervised feature learning provides a promising way in learning pertinent features without human intervention, its capability can be greatly limited due to the lack of well-curated examples. In this paper, we explored the transferability of knowledge acquired from a well-curated Glioblastoma Multiforme (GBM) dataset through its application to the representation and characterization of tissue histology from the Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) cohort. Our experimental results reveals two major phenotypic subtypes with statistically significantly different survival curves. Further differential expression analysis of these two subtypes indicates enrichment of genes regulated by NF-kB in response to TNF and genes up-regulated in response to IFNG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app