Add like
Add dislike
Add to saved papers

Platelet-rich plasma stimulates human dermal fibroblast proliferation via a Ras-dependent extracellular signal-regulated kinase 1/2 pathway.

Platelet-rich plasma (PRP) contains a high concentration of several growth factors and contributes to soft-tissue engineering and wound healing. However, the effect of PRP on human dermal fibroblast proliferation and responses is unknown. This was investigated in the present study using PRP prepared from the whole human blood using the double-spin method. Human dermal fibroblast cultures were established from skin samples collected during plastic surgery. Platelet concentration and growth factor levels in PRP were estimated, and a cell proliferation assay was carried out after PRP treatment. The role of Ras-dependent extracellular signal-regulated kinase (ERK)1/2 in the effects of PRP was investigated in human dermal fibroblasts by suppressing ERK1/2 expression with an inhibitor or by short interfering (si)RNA-mediated knockdown, and assessing ERK1/2 phosphorylation by western blotting as well as proliferation in PRP-treated cells. We found that PRP stimulated human dermal fibroblast proliferation, which was suppressed by ERK1/2 inhibitor treatment (P < 0.01). ERK1/2 phosphorylation was increased in the presence of PRP, while siRNA-mediated knockdown of ERK1/2 blocked cell proliferation normally induced by PRP treatment (P < 0.01). These results demonstrate that PRP induces human dermal fibroblast proliferation via activation of ERK1/2 signaling. Our findings provide a basis for the development of agents that can promote wound healing and can be applied to soft-tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app