Add like
Add dislike
Add to saved papers

Imatinib ameliorates bronchiolitis obliterans via inhibition of fibrocyte migration and differentiation.

BACKGROUND: Imatinib, a tyrosine kinase inhibitor, has been proposed as a potential anti-fibrotic agent for fibroproliferative diseases, including bronchiolitis obliterans (BO). However, the underlying anti-fibrotic mechanisms of the agent remain unclear. We evaluated whether bone (BM)-derived progenitor cells, fibrocytes, might be a target of imatinib in the attenuation of BO.

METHODS: We used a murine BO model induced by heterotopic tracheal transplantation and assessed the origin of fibroblasts by using green fluorescent protein-BM chimeric mice. We also evaluated the effects of imatinib on luminal obstruction and fibrocyte accumulation. The effects of imatinib on fibrocyte migration and differentiation were assessed by culturing fibrocytes in vitro.

RESULTS: In the murine BO model, tracheal allografts showed epithelial injury and developed complete luminal occlusion 28 days after transplantation. Most of the mesenchymal cells that had accumulated in the tracheal allograft were derived from BM cells. Imatinib treatment ameliorated the airway luminal occlusion and significantly reduced the number of fibrocytes in the allografts. In vitro studies showed that imatinib inhibited migration of cultured blood fibrocytes via the platelet-derived growth factor/platelet-derived growth factor receptor axis. Imatinib also inhibited differentiation of fibrocytes via suppression of c-Abl activity that was essential for the differentiation of monocytes to fibrocytes.

CONCLUSIONS: Imatinib prevents airway luminal obstruction by inhibiting the migration and differentiation of fibrocytes. Fibrocytes may be a novel target in the prevention and treatment of BO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app