Add like
Add dislike
Add to saved papers

Septins are involved in nuclear division, morphogenesis and pathogenicity in Fusarium graminearum.

Septins are GTP-binding proteins that regulate cell polarity, cytokinesis and cell morphogenesis. Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases worldwide. In this study, we have functionally characterized the core septins, Cdc3, Cdc10, Cdc11 and Cdc12 in F. graminearum. The loss of FgCdc3, FgCdc11, FgCdc12, but not FgCdc10, mutants showed significant reduction in growth, conidiation and virulence. Microscopic analyses revealed that all of them were involved in septum formation and nuclear division. Moreover, disruption of septin genes resulted in morphological defects in ascospores and conidia. Interestingly, conidia produced by ΔFgcdc3, ΔFgcdc11 and ΔFgcdc12 mutants exhibited deformation with interconnecting conidia in contrast to their parent wild-type strain PH-1 and the ΔFgcdc10 mutant that produced normal conidia. Using yeast two-hybrid assays, we determined the interactions among FgCdc3, FgCdc10, FgCdc11 and FgCdc12. Taken together, our results indicate that septins play important roles in the nuclear division, morphogenesis and pathogenicity in F. graminearum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app