Add like
Add dislike
Add to saved papers

Brain natriuretic peptide as a potential novel marker of salt-sensitivity in chronic kidney disease patients without cardiac dysfunction.

Although the renin-angiotensin system (RAS) is counter-balanced by a salt-sensitive mechanism in the hypertensive state, both are reported to be up-regulated in chronic kidney disease (CKD) patients. We conducted this study to evaluate the associations among the RAS, renal function, hypertension, and atherosclerosis, as well as to identify markers for salt-sensitivity. A total of 213 pre-dialysis CKD patients with preserved cardiac function (EF >50 %) were enrolled. Their renal and cardiac biochemical markers and plasma renin activity (PRA) were measured, and echocardiography and carotid artery ultrasound were performed. Their salt intake was estimated by the NaCl excretion from a 24-h collected urine sample. The PRA was higher in patients with hypertension (p = 0.018), and had a significant negative correlation with the eGFR (r = -0.23, p = 0.0067). Importantly, the PRA had a strong negative correlation with the brain natriuretic peptide (BNP) level (r = -0.28, p = 0.017) regardless of whether the patients were being treated with RAS inhibitors. The BNP level was related to the renal functions (eGFR: p = 0.001, ACR: p = 0.009). There was a significant positive correlation between the BNP level and carotid intima-media thickness (p < 0.001). A multivariate analysis revealed that older age and an excess of NaCl excretion were independent predictors of BNP elevation (p = 0.02 and 0.003, respectively). Our analysis revealed details of the counterbalance between BNP and PRA, as well as identifying that excess salt intake is a predictor of BNP elevation. These results indicate that the BNP could be a possible valuable marker for salt sensitivity, and that high salt sensitivity could facilitate atherosclerosis in CKD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app