Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Crucial roles of the Arp2/3 complex during mammalian corticogenesis.

Development 2016 August 2
The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex - the unique actin nucleator that produces branched actin networks - plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app